Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(2): 669-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759365

RESUMO

BACKGROUND: Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS: In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION: We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Inseticidas , Polímeros , Animais , Polímeros/metabolismo , Inseticidas/farmacologia , RNA de Cadeia Dupla/genética , Drosophila melanogaster/genética , Interferência de RNA
2.
Biomolecules ; 13(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509168

RESUMO

A novel protein, PID-5, has been shown to be a requirement for germline immortality and has recently been implicated in RNA-induced epigenetic silencing in the Caenorhabditis elegans embryo. Importantly, it has been shown to contain both an eTudor and aminopeptidase P-related domain. However, the silencing mechanism has not yet been fully characterised. In this study, bioinformatic tools were used to compare pre-existing aminopeptidase P molecular structures to the AlphaFold2-predicted aminopeptidase P-related domain of PID-5 (PID-5 APP-RD). Structural homology, metal composition, inhibitor-bonding interactions, and the potential for dimerisation were critically assessed through computational techniques, including structural superimposition and protein-ligand docking. Results from this research suggest that the metallopeptidase-like domain shares high structural homology with known aminopeptidase P enzymes and possesses the canonical 'pita-bread fold'. However, the absence of conserved metal-coordinating residues indicates that only a single Zn2+ may be bound at the active site. The PID-5 APP-RD may form transient interactions with a known aminopeptidase P inhibitor and may therefore recognise substrates in a comparable way to the known structures. However, loss of key catalytic residues suggests the domain will be inactive. Further evidence suggests that heterodimerisation with C. elegans aminopeptidase P is feasible and therefore PID-5 is predicted to regulate proteolytic cleavage in the silencing pathway. PID-5 may interact with PID-2 to bring aminopeptidase P activity to the Z-granule, where it could influence WAGO-4 activity to ensure the balanced production of 22G-RNA signals for transgenerational silencing. Targeted experiments into APPs implicated in malaria and cancer are required in order to build upon the biological and therapeutic significance of this research.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Domínios Proteicos , Animais , Aminopeptidases/química , Aminopeptidases/ultraestrutura , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metais/metabolismo , RNA/metabolismo , Domínios Proteicos/genética , Domínios Proteicos/fisiologia
3.
Biomacromolecules ; 23(6): 2362-2373, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549247

RESUMO

Interaction between the anionic phosphodiester backbone of DNA/RNA and polycations can be exploited as a means of delivering genetic material for therapeutic and agrochemical applications. In this work, quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N,N-dimethylacrylamide) (PQDMAEMA-b-PDMAm) double hydrophilic block copolymers (DHBCs) were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization as nonviral delivery vehicles for double-stranded RNA. The assembly of DHBCs and dsRNA forms distinct polyplexes that were thoroughly characterized to establish a relationship between the length of the uncharged poly(N,N-dimethylacrylamide) (PDMA) block and the polyplex size, complexation efficiency, and colloidal stability. Dynamic light scattering reveals the formation of smaller polyplexes with increasing PDMA lengths, while gel electrophoresis confirms that these polyplexes require higher N/P ratio for full complexation. DHBC polyplexes exhibit enhanced stability in low ionic strength environments in comparison to homopolymer-based polyplexes. In vitro enzymatic degradation assays demonstrate that both homopolymer and DHBC polymers efficiently protect dsRNA from degradation by RNase A enzyme.


Assuntos
Polímeros , RNA de Cadeia Dupla , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polimerização , Polímeros/química
4.
J Proteomics ; 246: 104307, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34174476

RESUMO

Peptides present in the seminal fluid of Drosophila melanogaster can function as antimicrobial agents, enzyme inhibitors and as pheromones that elicit physiological and behavioural responses in the post-mated female. Understanding the molecular interactions by which these peptides influence reproduction requires detailed knowledge of their molecular structures. However, this information is often lacking and cannot be gleaned from just gene sequences and standard proteomic data. We now report the native structures of four seminal fluid peptides (andropin, CG42782, Met75C and Acp54A1) from the ejaculatory duct of male D. melanogaster. The mature CG42782, Met75C and Acp54A1 peptides each have a cyclic structure formed by a disulfide bond, which will reduce conformational freedom and enhance metabolic stability. In addition, the presence of a penultimate Pro in CG42782 and Met75C will help prevent degradation by carboxypeptidases. Met75C has undergone more extensive post-translational modifications with the formation of an N-terminal pyroglutamyl residue and the attachment of a mucin-like O-glycan to the side chain of Thr4. Both of these modifications are expected to further enhance the stability of the secreted peptide. The glycan has a rare zwitterionic structure comprising an O-linked N-acetyl hexosamine, a hexose and, unusually, phosphoethanolamine. A survey of various genomes showed that andropin, CG42782, and Acp54A1 are relatively recent genes and are restricted to the melanogaster subgroup. Met75C, however, was also found in members of the obscura species groups and in Scaptodrosophila lebanonensis. Andropin is related to the cecropin gene family and probably arose by tandem gene duplication, whereas CG42782, Met75C and Acp54A1 possibly emerged de novo. We speculate that the post-translational modifications that we report for these gene products will be important not only for a biological function, but also for metabolic stability and might also facilitate transport across tissue barriers, such as the blood-brain barrier of the female insect. BIOLOGICAL SIGNIFICANCE: Seminal fluid peptides of D. melanogaster function as antimicrobials, enzyme inhibitors and as pheromones, eliciting physiological and behavioural responses in the post-mated female. A fuller understanding of how these peptides influence reproduction requires knowledge not only of their primary structure, but also of their post-translational modification. However, this information is often lacking and difficult to glean from standard proteomic data. The reported modifications, including the unusual glycosylation, adds much to our knowledge of this important class of peptides in this model organism, par excellence.


Assuntos
Drosophila melanogaster , Glicopeptídeos , Animais , Drosophila melanogaster/metabolismo , Ductos Ejaculatórios/metabolismo , Feminino , Glicosilação , Masculino , Peptídeos/metabolismo , Proteômica
5.
Neurochem Res ; 44(6): 1508-1516, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30661229

RESUMO

Sleep is a highly conserved state in animals, but its regulation and physiological function is poorly understood. Drosophila melanogaster is an excellent model for studying sleep regulation and has been used to investigate how sex and social interactions can influence wake-sleep profiles. Previously we have shown that copulation has a profound effect on day time activity and quiescence (siesta sleep) of individual post-mated females. Here we have the studied the effect of mating and the transfer of the 36 amino acid sex peptide in the seminal fluid on the behavior of mated female Drosophila populations, where there will be on-going social interactions. The locomotor activity and sleep patterns of virgin and post-mated female D. melanogaster from three laboratory strains (Oregon-R, Canton-S and Dahomey) were recorded in social groups of 20 individuals in a 12-12 h light-dark cycle. Virgin female populations from all three fly strains displayed consolidated periods of low activity in between two sharp peaks of activity, corresponding to lights-on and lights-off. Similar light-correlated peaks were recorded for the mated female populations, however, the low afternoon activity and siesta seen in virgin populations was abolished after mating in all three strains. In contrast, night activity appeared unaffected. This post-mating effect was sustained for several days and was dependent on the male SP acting as a pheromone. Evidence from mixed populations of virgin and mated females suggests that the siesta of non-mated females is not easily disturbed by the presence of highly active post-mated females.


Assuntos
Comportamento Animal/fisiologia , Copulação/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Peptídeos/fisiologia , Sono/fisiologia , Comportamento Social , Animais , Ritmo Circadiano/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Locomoção/fisiologia , Masculino
6.
Gen Comp Endocrinol ; 278: 50-57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077792

RESUMO

There is much interest in targeting neuropeptide signaling for the development of new and environmentally friendly insect control chemicals. In this study we have focused attention on the peptidergic control of the adult crop of Delia radicum (cabbage root fly), an important pest of brassicas in European agriculture. The dipteran crop is a muscular organ formed from the foregut of the digestive tract and plays a vital role in the processing of food in adult flies. We have shown using direct tissue profiling by MALDI-TOF mass spectrometry that the decapeptide myosuppressin (TDVDHVFLRFamide) is present in the crop nerve bundle and that application of this peptide to the crop potently inhibits the spontaneous contractions of the muscular lobes with an IC50 of 4.4 × 10-8 M. The delivery of myosuppressin either by oral administration or by injection had no significant detrimental effect on the adult fly. This failure to elicit a response is possibly due to the susceptibility of the peptide to degradative peptidases that cleave the parent peptide to inactive fragments. Indeed, we show that the crop of D. radicum is a source of neuropeptide-degrading endo- and amino-peptidases. In contrast, feeding benzethonium chloride, a non-peptide agonist of myosuppressin, reduced feeding rate and increased the rate of mortality of adult D. radicum. Current results are indicative of a key role for myosuppressin in the regulation of crop physiology and the results achieved during this project provide the basis for subsequent studies aimed at developing insecticidal molecules targeting the peptidergic control of feeding and food digestion in this pest species.


Assuntos
Estruturas Animais/anatomia & histologia , Brassica/parasitologia , Dípteros/anatomia & histologia , Sequência de Aminoácidos , Estruturas Animais/inervação , Animais , Dípteros/fisiologia , Contração Muscular , Peptídeo Hidrolases/metabolismo , Peptídeos/química
7.
PLoS One ; 12(11): e0188021, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29125862

RESUMO

Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 µM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii.


Assuntos
Produtos Agrícolas , Drosophila/fisiologia , Controle Biológico de Vetores , Animais
8.
J Exp Biol ; 218(Pt 23): 3855-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26486360

RESUMO

The polyphagous Drosophila suzukii is a highly invasive species that causes extensive damage to a wide range of berry and stone fruit crops. A better understanding of its biology and especially its behaviour will aid the development of new control strategies. We investigated the locomotor behaviour of D. suzukii in a semi-natural environment resembling a typical summer in northern England and show that adult female D. suzukii are at least 4-fold more active during daylight hours than adult males. This result was reproduced in several laboratory environments and was shown to be a robust feature of mated, but not virgin, female flies. Both males and virgin females kept on a 12 h light:12 h dark (12LD) cycle and constant temperature displayed night-time inactivity (sleep) followed by weak activity in the morning, an afternoon period of quiescence (siesta) and then a prominent evening peak of activity. Both the siesta and the sharp evening peak at lights off were severely reduced in females after mating. Flies of either sex entrained in 12LD displayed a circadian pattern of activity in constant darkness confirming the importance of an endogenous clock in regulating adult activity. This response of females to mating is similar to that elicited in female Drosophila melanogaster by the male sex peptide (SP). We used mass spectrometry to identify a molecular ion (m/z, 5145) corresponding to the poly-hydroxylated SP of D. suzukii and to show that this molecule is transferred to the female reproductive tract during copulation. We propose that the siesta experienced by male and virgin female D. suzukii is an adaptation to avoid unnecessary exposure to the afternoon sun, but that mated females faced with the challenge of obtaining resources for egg production and finding oviposition sites take greater risks, and we suggest that the change in female behaviour is induced by the male SP.


Assuntos
Drosophila/fisiologia , Animais , Ritmo Circadiano , Copulação/fisiologia , Escuridão , Proteínas de Drosophila/análise , Feminino , Locomoção , Masculino , Peptídeos/análise , Caracteres Sexuais , Sono/fisiologia
9.
Peptides ; 68: 33-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25158078

RESUMO

Drosophila suzukii is a highly polyphagous invasive pest which has been recently introduced into Europe and North America, where it is causing severe economic losses through larval infestations of stone and berry fruits. The peptidome of the selected nervous tissues of adult D. suzukii was investigated as a first step in identifying potential targets for the development of novel insecticides. Through in silico analyses of the D. suzukii genome databases 28 neuropeptide families, comprising more than 70 predicted peptides were identified. Using a combination of liquid chromatography and mass spectrometry of tissue extracts, 33 predicted peptides, representing 15 different peptide families were identified by their molecular masses and a total of 17 peptide sequences were confirmed by ion fragmentation. A comparison between the peptides and precursors of D. suzukii and D. melanogaster shows they are highly conserved, with differences only identified in the amino acid sequences of the peptides encoded in the FMRFamide, hugin and ecydysis triggering hormone precursors. All other peptides predicted and identified from D. suzukii appear to be identical to those previously characterized from D. melanogaster. Adipokinetic hormone was only identified in the corpus cardiacum, other peptides present included short neuropeptide F, a pyrokinin and myosuppressin, the latter of which was the only peptide identified from the crop nerve bundle. Peptides present in extracts of the brain and/or thoracico-abdominal ganglion included allatostatins, cardioacceleratory peptide 2b, corazonin, extended FMRFamides, pyrokinins, myoinihibitory peptides, neuropeptide-like precursor 1, SIFamide, short neuropeptide F, kinin, sulfakinins and tachykinin related peptides.


Assuntos
Proteínas de Drosophila/química , Drosophila/química , Neuropeptídeos/química , Proteoma/química , Sequência de Aminoácidos , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Genômica , Espécies Introduzidas , Masculino , Dados de Sequência Molecular , Neuropeptídeos/metabolismo , Especificidade de Órgãos , Proteoma/metabolismo , Homologia de Sequência de Aminoácidos
10.
Peptides ; 53: 258-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24398368

RESUMO

The male sex peptide (SP) of Drosophila melanogaster has wide ranging effects on females, including rejection of courting males, increased egg production, changes to the feeding habit, increased synthesis of antimicrobial peptides and elevated locomotor activity during day-time. The peptide activates receptors in sensory neurons of the female reproductive tract and can also traverse into the hemolymph and reach the central nervous system. The SP receptor involved in rejection and egg-laying responses has been shown to be identical to the receptor for the evolutionary conserved myoinhibitory peptides (MIPs) that function as neuropeptides in both males and females. Intriguingly, MIPs cannot substitute for SP when either expressed in the male accessory glands or injected into virgin females. MIPs are linear peptides with an amidated C-terminus which protects them from cleavage by carboxypeptidases, but leaves them exposed to potential attack from aminopeptidase and endopeptidase activities. In contrast, the SP region responsible for eliciting the post-mating response is cyclic and has several hydroxyproline residues N-terminal to the disulfide bridge which is expected to protect the biological activity of SP from peptidases of the male accessory gland and seminal fluid. We now present in vitro data showing that SP is metabolically stable, whereas MIPs are much more susceptible to degradation by peptidases of the male accessory gland and the hemolymph of virgin female D. melanogaster. SP has evolved relatively recently as a MIP receptor ligand that is particularly well adapted to surviving in the hostile degradome of the male accessory gland and seminal fluid.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Peptídeos/metabolismo , Animais , Drosophila melanogaster/metabolismo , Feminino , Masculino , Peptídeo Hidrolases/metabolismo , Sêmen/metabolismo
11.
FEBS J ; 279(24): 4525-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23082758

RESUMO

Human somatic angiotensin-1 converting enzyme (ACE) is a zinc-dependent exopeptidase, that catalyses the conversion of the decapeptide angiotensin I to the octapeptide angiotensin II, by removing a C-terminal dipeptide. It is the principal component of the renin-angiotensin-aldosterone system that regulates blood pressure. Hence it is an important therapeutic target for the treatment of hypertension and cardiovascular disorders. Here, we report the structures of an ACE homologue from Drosophila melanogaster (AnCE; a proven structural model for the more complex human ACE) co-crystallized with mammalian peptide substrates (bradykinin, Thr(6) -bradykinin, angiotensin I and a snake venom peptide inhibitor, bradykinin-potentiating peptide-b). The structures determined at 2-Å resolution illustrate that both angiotensin II (the cleaved product of angiotensin I by AnCE) and bradykinin-potentiating peptide-b bind in an analogous fashion at the active site of AnCE, but also exhibit significant differences. In addition, the binding of Arg-Pro-Pro, the cleavage product of bradykinin and Thr(6) - bradykinin, provides additional detail of the general peptide binding in AnCE. Thus the new structures of AnCE complexes presented here improves our understanding of the binding of peptides and the mechanism by which peptides inhibit this family of enzymes. DATABASE: The atomic coordinates and structure factors for AnCE-Ang II (code 4AA1), AnCE-BPPb (code 4AA2), AnCE-BK (code 4ASQ) and AnCE-Thr6-BK (code 4ASR) complexes have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/) STRUCTURED DIGITAL ABSTRACT: • AnCE cleaves Ang I by enzymatic study (View interaction) • Bradykinin and AnCE bind by x-ray crystallography (View interaction) • BPP and AnCE bind by x-ray crystallography (View interaction) • AnCE cleaves Bradykinin by enzymatic study (View interaction) • Ang II and AnCE bind by x-ray crystallography (View interaction).


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Metaloendopeptidases/metabolismo , Peptídeos/metabolismo , Angiotensina II/farmacologia , Animais , Cristalografia por Raios X , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/química , Modelos Moleculares , Peptidil Dipeptidase A
12.
Peptides ; 34(1): 150-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22080116

RESUMO

Male accessory glands (MAGs) of insects are responsible for the production of many of the seminal fluid proteins and peptides that elicit physiological and behavioral responses in the post-mated female. In the yellow fever mosquito, Aedes aegypti, seminal fluid components are responsible for stimulating egg production, changing female behavior away from host-seeking toward egg-laying and mating refractoriness, but hitherto no behavior-modifying molecule from the MAGs has been structurally characterized. We now show using mass spectrometry and HPLC/ELISA that the MAG is a major site of synthesis of the biologically active decapeptide, Aea-HP-1 (pERPhPSLKTRFamide) that was first characterized by Matsumoto and colleagues in 1989 from mosquito head extracts and shown to have host-seeking inhibitory properties. The peptide is localized to the anterior portion of the MAG, occurs at high concentrations in the gland and is transferred to the female reproductive tract on copulation. Aea-HP-1 has a pyroglutamic acid at the N-terminus, an amidated carboxyl at the C-terminus and an unusual 4-hydroxyproline in position 4 of the peptide. The structure of the peptide with its blocked N- and C-termini confers resistance to metabolic inactivation by MAG peptidases; however the peptide persists for less than 2h in the female reproductive tract after copulation. Aea-HP-1 is not a ligand for the mosquito sex peptide/myoinhibitory peptide receptor. A. aegypti often mate close to the host and therefore it is possible that male-derived Aea-HP-1 induces short-term changes to female host-seeking behavior to reduce potentially lethal encounters with hosts soon after insemination.


Assuntos
Aedes/metabolismo , Aedes/fisiologia , Copulação/fisiologia , Hormônios de Inseto/metabolismo , Peptídeos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Imuno-Histoquímica , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Proteome Res ; 10(4): 1881-92, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21214272

RESUMO

Peptide hormones are key messengers in the signaling network between the nervous system, endocrine glands, energy stores and the gastrointestinal tract that regulates feeding and metabolism. Studies on the Drosophila nervous system have uncovered parallels and homologies in homeostatic peptidergic signaling between fruit flies and vertebrates. Yet, the role of enteroendocrine peptides in the regulation of feeding and metabolism has not been explored, with research hampered by the unknown identity of peptides produced by the fly's intestinal tract. We performed a peptidomic LC/MS analysis of the fruit fly midgut containing the enteroendocrine cells. By MS/MS fragmentation, we found 24 peptides from 9 different preprohormones in midgut extracts, including MIP-4 and 2 forms of AST-C. DH(31), CCHamide1 and CCHamide2 are biochemically characterized for the first time. All enteroendocrine peptides represent brain-gut peptides, and apparently are processed by Drosophila prohormone convertase 2 (AMON) as suggested by impaired peptide detectability in amon mutants and localization of amon-driven GFP to enteroendocrine cells. Because of its genetic amenability and peptide diversity, Drosophila provides a good model system to study peptide signaling. The identification of enteroendocrine peptides in the fruit fly provides a platform to address functions of gut peptide hormones in the regulation of feeding and metabolism.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Hormônios de Inseto/metabolismo , Hormônios Peptídicos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida/métodos , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Trato Gastrointestinal/metabolismo , Hormônios de Inseto/química , Hormônios de Inseto/genética , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Hormônios Peptídicos/química , Hormônios Peptídicos/genética
14.
Peptides ; 32(3): 587-94, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20869418

RESUMO

The tachykinin-related peptides (TRPs) are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Two new biostable TRP analogs containing multiple, sterically hindered Aib residues were synthesized and found to exhibit significantly enhanced resistance to hydrolysis by angiotensin converting enzyme and neprilysin, membrane-bound enzymes that degrade and inactivate natural TRPs. The two biostable analogs were also found to retain significant myostimulatory activity in an isolated cockroach hindgut preparation, the bioassay used to isolate and identify the first members of the TRP family. Indeed one of the analogs (Leuma-TRP-Aib-1) matched the potency and efficacy of the natural, parent TRP peptide in this myotropic bioassay. The two biostable TRP analogs were further fed in solutions of artificial diet to the pea aphid over a period of 3 days and evaluated for antifeedant and aphicidal activity and compared with the effect of treatment with three natural, unmodified TRPs. The two biostable multi-Aib TRP analogs were observed to elicit aphicidal effects within the first 24 h. In contrast natural, unmodified TRPs, including two that are native to the pea aphid, demonstrated little or no activity. The most active analog, double-Aib analog Leuma-TRP-Aib-1 (pEA[Aib]SGFL[Aib]VR-NH(2)), featured aphicidal activity calculated at an LC(50) of 0.0083 nmol/µl (0.0087 µg/µl) and an LT(50) of 1.4 days, matching or exceeding the potency of commercially available aphicides. The mechanism of this activity has yet to be established. The aphicidal activity of the biostable TRP analogs may result from disruption of digestive processes by interfering with gut motility patterns and/or with fluid cycling in the gut; processes shown to be regulated by the TRPs in other insects. These active TRP analogs and/or second generation analogs offer potential as environmentally friendly pest aphid control agents.


Assuntos
Afídeos/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Taquicininas/química , Sequência de Aminoácidos , Animais , Hemípteros , Dados de Sequência Molecular , Peptídeos/síntese química
15.
Dev Biol ; 344(2): 992-1000, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20599902

RESUMO

In the one-cell Caenorhabditis elegans embryo, the anterior-posterior (A-P) axis is established when the sperm donated centrosome contacts the posterior cortex. While this contact appears to be essential for axis polarization, little is known about the mechanisms governing centrosome positioning during this process. pam-1 encodes a puromycin sensitive aminopeptidase that regulates centrosome positioning in the early embryo. Previously we showed that pam-1 mutants fail to polarize the A-P axis. Here we show that PAM-1 can be found in mature sperm and in cytoplasm throughout early embryogenesis where it concentrates around mitotic centrosomes and chromosomes. We provide further evidence that PAM-1 acts early in the polarization process by showing that PAR-1 and PAR-6 do not localize appropriately in pam-1 mutants. Additionally, we tested the hypothesis that PAM-1's role in polarity establishment is to ensure centrosome contact with the posterior cortex. We inactivated the microtubule motor dynein, DHC-1, in pam-1 mutants, in an attempt to prevent centrosome movement from the cortex and restore anterior-posterior polarity. When this was done, the aberrant centrosome movements of pam-1 mutants were not observed and anterior-posterior polarity was properly established, with proper localization of cortical and cytoplasmic determinants. We conclude that PAM-1's role in axis polarization is to prevent premature movement of the centrosome from the posterior cortex, ensuring proper axis establishment in the embryo.


Assuntos
Aminopeptidases/metabolismo , Animais , Caenorhabditis elegans/genética , Células , Estruturas Celulares , Centrossomo , Citoplasma , Sacarose Alimentar , Dineínas , Alimentos Formulados , Masculino , Microtúbulos , Espermatozoides
16.
J Clin Invest ; 120(3): 791-802, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179356

RESUMO

The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1-NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are "ciliopathies". Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.


Assuntos
Aminopeptidases/metabolismo , Doenças Genéticas Inatas/enzimologia , Rim/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Insuficiência Renal/enzimologia , Aminopeptidases/genética , Animais , Centrossomo/enzimologia , Centrossomo/patologia , Mapeamento Cromossômico/métodos , Cílios/enzimologia , Cílios/genética , Cílios/patologia , Família , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Rim/patologia , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/genética , Insuficiência Renal/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
Proc Biol Sci ; 277(1678): 65-70, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19793753

RESUMO

Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon 'siesta'. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.


Assuntos
Copulação/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Atividade Motora/fisiologia , Peptídeos/fisiologia , Sono/fisiologia , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Caracteres Sexuais
18.
Gen Comp Endocrinol ; 162(1): 8-17, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19135055

RESUMO

Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.


Assuntos
Proteínas de Insetos/fisiologia , Neuropeptídeos/metabolismo , Peptídeo Hidrolases/fisiologia , Aminopeptidases/química , Aminopeptidases/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Hidrólise , Proteínas de Insetos/metabolismo , Modelos Moleculares , Neprilisina/química , Neprilisina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/química , Peptídeo Hidrolases/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Filogenia
19.
Peptides ; 30(3): 571-4, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19038301

RESUMO

The neprilysin (M13) family of zinc-metallopeptidases has been implicated in a variety of physiological processes, but principally the control of neuropeptide levels in a range of animal species. The over-expression of the amyloid-degrading enzyme, neprilysin, as a therapeutic strategy for Alzheimer's disease is a concept that is gaining in popularity. Here we utilize the GAL4/UAS system to over-express the Drosophila melanogaster Nep2 gene, a close homologue of neprilysin, in flies yielding an increase in NEP2 protein that is detectable by both immunoblotting and enzyme activity. This increase in NEP2 caused a behavioral phenotype manifested in abnormal climbing behavior. Wild type flies climb in a linear, vertical path, but NEP2 over-expressing (Nep2(OEX)) flies tend to climb in a spiral pattern and display an increase in grooming behavior during frequent stationary periods. Nep2(OEX) flies also perform poorly in a geotaxis maze, taking ten times as long to complete the course compared to wild type Drosophila. We hypothesize that the poor performance of the Nep2(OEX) flies in locomotor assays is due to perturbation of neuropeptide signaling and provides evidence of detrimental effects of neprilysin over-expression.


Assuntos
Comportamento Animal/fisiologia , Locomoção/fisiologia , Neprilisina/biossíntese , Animais , Drosophila melanogaster , Aprendizagem em Labirinto/fisiologia
20.
Gen Comp Endocrinol ; 162(1): 122-8, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18983996

RESUMO

The multifunctional arthropod 'insect kinins' share the evolutionarily conserved C-terminal pentapeptide motif Phe-X(1)-X(2)-Trp-Gly-NH(2), where X(1)=His, Asn, Ser, or Tyr and X(2)=Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects. Compounds with similar biological activity could be exploited for the control of arthropod pest populations such as the mosquito Aedes aegypti (L.) and the southern cattle tick Rhipicephalus (Boophilus) microplus (Canestrini), vectors of human and animal pathogens, respectively. Insect kinins, however, are susceptible to fast enzymatic degradation by endogenous peptidases that severely limit their use as tools for pest control or for endocrinological studies. To enhance resistance to peptidases, analogs of the insect kinins incorporating bulky alpha,alpha-disubstituted amino acids in positions adjacent to both primary and secondary peptidase hydrolysis sites were synthesized. In comparison with a control insect kinin, several of these analogs are highly stable to hydrolysis by degradative enzymes ANCE, neprilysin and Leucine aminopeptidase. Six analogs were evaluated by calcium bioluminescence assay on recombinant receptors from mosquito and tick. Four of these analogs either matched or exceeded the potency of the control kinin peptide agonist. One of these was about 5-fold more potent than the control agonist on the tick receptor. This analog was 8-fold more potent than the control agonist on the mosquito receptor, and twice more potent than the endogenous Aedes kinin-II. The analog also demonstrated potent activity in an in vitro Aedes Malpighian tubule fluid secretion assay. Similar comparisons of analog potency cannot be made to tick kinins because no endogenous kinin has yet been identified. These potent, biostable analogs represent ideal new tools for endocrinologists studying arthropod kinin-regulated processes in vivo, particularly for ticks in which their role remains to be established.


Assuntos
Aedes/efeitos dos fármacos , Proteínas de Insetos/farmacologia , Cininas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Rhipicephalus/efeitos dos fármacos , Aedes/metabolismo , Animais , Antígenos CD13/metabolismo , Células CHO , Cricetinae , Cricetulus , Hidrólise , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Cininas/química , Cininas/metabolismo , Neprilisina/metabolismo , Peptidil Dipeptidase A/metabolismo , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/metabolismo , Rhipicephalus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA